\(\int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^{3/2}} \, dx\) [1335]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 229 \[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^{3/2}} \, dx=-\frac {\sqrt {a+b x+c x^2}}{c d \sqrt {b d+2 c d x}}+\frac {\left (b^2-4 a c\right )^{3/4} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\arcsin \left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{c^2 d^{3/2} \sqrt {a+b x+c x^2}}-\frac {\left (b^2-4 a c\right )^{3/4} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right ),-1\right )}{c^2 d^{3/2} \sqrt {a+b x+c x^2}} \]

[Out]

-(c*x^2+b*x+a)^(1/2)/c/d/(2*c*d*x+b*d)^(1/2)+(-4*a*c+b^2)^(3/4)*EllipticE((2*c*d*x+b*d)^(1/2)/(-4*a*c+b^2)^(1/
4)/d^(1/2),I)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2))^(1/2)/c^2/d^(3/2)/(c*x^2+b*x+a)^(1/2)-(-4*a*c+b^2)^(3/4)*Ellipti
cF((2*c*d*x+b*d)^(1/2)/(-4*a*c+b^2)^(1/4)/d^(1/2),I)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^2))^(1/2)/c^2/d^(3/2)/(c*x^2+
b*x+a)^(1/2)

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {698, 705, 704, 313, 227, 1213, 435} \[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^{3/2}} \, dx=-\frac {\left (b^2-4 a c\right )^{3/4} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right ),-1\right )}{c^2 d^{3/2} \sqrt {a+b x+c x^2}}+\frac {\left (b^2-4 a c\right )^{3/4} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\arcsin \left (\frac {\sqrt {b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{c^2 d^{3/2} \sqrt {a+b x+c x^2}}-\frac {\sqrt {a+b x+c x^2}}{c d \sqrt {b d+2 c d x}} \]

[In]

Int[Sqrt[a + b*x + c*x^2]/(b*d + 2*c*d*x)^(3/2),x]

[Out]

-(Sqrt[a + b*x + c*x^2]/(c*d*Sqrt[b*d + 2*c*d*x])) + ((b^2 - 4*a*c)^(3/4)*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 -
4*a*c))]*EllipticE[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/(c^2*d^(3/2)*Sqrt[a + b*x +
 c*x^2]) - ((b^2 - 4*a*c)^(3/4)*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d
*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/(c^2*d^(3/2)*Sqrt[a + b*x + c*x^2])

Rule 227

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[Rt[-b, 4]*(x/Rt[a, 4])], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 313

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-b/a, 2]}, Dist[-q^(-1), Int[1/Sqrt[a + b*x^4]
, x], x] + Dist[1/q, Int[(1 + q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && NegQ[b/a]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 698

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 1))), x] - Dist[b*(p/(d*e*(m + 1))), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^(p - 1
), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] &&
 GtQ[p, 0] && LtQ[m, -1] &&  !(IntegerQ[m/2] && LtQ[m + 2*p + 3, 0]) && IntegerQ[2*p]

Rule 704

Int[Sqrt[(d_) + (e_.)*(x_)]/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(4/e)*Sqrt[-c/(b^2 - 4*
a*c)], Subst[Int[x^2/Sqrt[Simp[1 - b^2*(x^4/(d^2*(b^2 - 4*a*c))), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]

Rule 705

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[(-c)*((a + b*x +
c*x^2)/(b^2 - 4*a*c))]/Sqrt[a + b*x + c*x^2], Int[(d + e*x)^m/Sqrt[(-a)*(c/(b^2 - 4*a*c)) - b*c*(x/(b^2 - 4*a*
c)) - c^2*(x^2/(b^2 - 4*a*c))], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
 0] && EqQ[m^2, 1/4]

Rule 1213

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Dist[d/Sqrt[a], Int[Sqrt[1 + e*(x^2/d)]/Sqrt
[1 - e*(x^2/d)], x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && EqQ[c*d^2 + a*e^2, 0] && GtQ[a, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\sqrt {a+b x+c x^2}}{c d \sqrt {b d+2 c d x}}+\frac {\int \frac {\sqrt {b d+2 c d x}}{\sqrt {a+b x+c x^2}} \, dx}{2 c d^2} \\ & = -\frac {\sqrt {a+b x+c x^2}}{c d \sqrt {b d+2 c d x}}+\frac {\sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \int \frac {\sqrt {b d+2 c d x}}{\sqrt {-\frac {a c}{b^2-4 a c}-\frac {b c x}{b^2-4 a c}-\frac {c^2 x^2}{b^2-4 a c}}} \, dx}{2 c d^2 \sqrt {a+b x+c x^2}} \\ & = -\frac {\sqrt {a+b x+c x^2}}{c d \sqrt {b d+2 c d x}}+\frac {\sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \text {Subst}\left (\int \frac {x^2}{\sqrt {1-\frac {x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt {b d+2 c d x}\right )}{c^2 d^3 \sqrt {a+b x+c x^2}} \\ & = -\frac {\sqrt {a+b x+c x^2}}{c d \sqrt {b d+2 c d x}}-\frac {\left (\sqrt {b^2-4 a c} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt {b d+2 c d x}\right )}{c^2 d^2 \sqrt {a+b x+c x^2}}+\frac {\left (\sqrt {b^2-4 a c} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {1+\frac {x^2}{\sqrt {b^2-4 a c} d}}{\sqrt {1-\frac {x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt {b d+2 c d x}\right )}{c^2 d^2 \sqrt {a+b x+c x^2}} \\ & = -\frac {\sqrt {a+b x+c x^2}}{c d \sqrt {b d+2 c d x}}-\frac {\left (b^2-4 a c\right )^{3/4} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{c^2 d^{3/2} \sqrt {a+b x+c x^2}}+\frac {\left (\sqrt {b^2-4 a c} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {x^2}{\sqrt {b^2-4 a c} d}}}{\sqrt {1-\frac {x^2}{\sqrt {b^2-4 a c} d}}} \, dx,x,\sqrt {b d+2 c d x}\right )}{c^2 d^2 \sqrt {a+b x+c x^2}} \\ & = -\frac {\sqrt {a+b x+c x^2}}{c d \sqrt {b d+2 c d x}}+\frac {\left (b^2-4 a c\right )^{3/4} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\sin ^{-1}\left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{c^2 d^{3/2} \sqrt {a+b x+c x^2}}-\frac {\left (b^2-4 a c\right )^{3/4} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right )\right |-1\right )}{c^2 d^{3/2} \sqrt {a+b x+c x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.04 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.40 \[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^{3/2}} \, dx=-\frac {\sqrt {a+x (b+c x)} \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},-\frac {1}{4},\frac {3}{4},\frac {(b+2 c x)^2}{b^2-4 a c}\right )}{2 c d \sqrt {d (b+2 c x)} \sqrt {\frac {c (a+x (b+c x))}{-b^2+4 a c}}} \]

[In]

Integrate[Sqrt[a + b*x + c*x^2]/(b*d + 2*c*d*x)^(3/2),x]

[Out]

-1/2*(Sqrt[a + x*(b + c*x)]*Hypergeometric2F1[-1/2, -1/4, 3/4, (b + 2*c*x)^2/(b^2 - 4*a*c)])/(c*d*Sqrt[d*(b +
2*c*x)]*Sqrt[(c*(a + x*(b + c*x)))/(-b^2 + 4*a*c)])

Maple [A] (verified)

Time = 2.34 (sec) , antiderivative size = 325, normalized size of antiderivative = 1.42

method result size
default \(\frac {\sqrt {c \,x^{2}+b x +a}\, \sqrt {d \left (2 c x +b \right )}\, \left (4 \sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {-\frac {2 c x +b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {\frac {-b -2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, E\left (\frac {\sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {2}}{2}, \sqrt {2}\right ) a c -\sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {-\frac {2 c x +b}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {\frac {-b -2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, E\left (\frac {\sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {2}}{2}, \sqrt {2}\right ) b^{2}-2 c^{2} x^{2}-2 b c x -2 a c \right )}{2 d^{2} \left (2 c^{2} x^{3}+3 c b \,x^{2}+2 a c x +b^{2} x +a b \right ) c^{2}}\) \(325\)
elliptic \(\text {Expression too large to display}\) \(1003\)

[In]

int((c*x^2+b*x+a)^(1/2)/(2*c*d*x+b*d)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/2*(c*x^2+b*x+a)^(1/2)*(d*(2*c*x+b))^(1/2)*(4*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*
x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticE(1/2*((b+2*c*
x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*a*c-((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2
)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*
EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*b^2-2*c^2*x^2-2*b*c*x-2
*a*c)/d^2/(2*c^2*x^3+3*b*c*x^2+2*a*c*x+b^2*x+a*b)/c^2

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.45 \[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^{3/2}} \, dx=-\frac {\sqrt {2} \sqrt {c^{2} d} {\left (2 \, c x + b\right )} {\rm weierstrassZeta}\left (\frac {b^{2} - 4 \, a c}{c^{2}}, 0, {\rm weierstrassPInverse}\left (\frac {b^{2} - 4 \, a c}{c^{2}}, 0, \frac {2 \, c x + b}{2 \, c}\right )\right ) + \sqrt {2 \, c d x + b d} \sqrt {c x^{2} + b x + a} c}{2 \, c^{3} d^{2} x + b c^{2} d^{2}} \]

[In]

integrate((c*x^2+b*x+a)^(1/2)/(2*c*d*x+b*d)^(3/2),x, algorithm="fricas")

[Out]

-(sqrt(2)*sqrt(c^2*d)*(2*c*x + b)*weierstrassZeta((b^2 - 4*a*c)/c^2, 0, weierstrassPInverse((b^2 - 4*a*c)/c^2,
 0, 1/2*(2*c*x + b)/c)) + sqrt(2*c*d*x + b*d)*sqrt(c*x^2 + b*x + a)*c)/(2*c^3*d^2*x + b*c^2*d^2)

Sympy [F]

\[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^{3/2}} \, dx=\int \frac {\sqrt {a + b x + c x^{2}}}{\left (d \left (b + 2 c x\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((c*x**2+b*x+a)**(1/2)/(2*c*d*x+b*d)**(3/2),x)

[Out]

Integral(sqrt(a + b*x + c*x**2)/(d*(b + 2*c*x))**(3/2), x)

Maxima [F]

\[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^{3/2}} \, dx=\int { \frac {\sqrt {c x^{2} + b x + a}}{{\left (2 \, c d x + b d\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((c*x^2+b*x+a)^(1/2)/(2*c*d*x+b*d)^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + b*x + a)/(2*c*d*x + b*d)^(3/2), x)

Giac [F]

\[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^{3/2}} \, dx=\int { \frac {\sqrt {c x^{2} + b x + a}}{{\left (2 \, c d x + b d\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((c*x^2+b*x+a)^(1/2)/(2*c*d*x+b*d)^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^2 + b*x + a)/(2*c*d*x + b*d)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b x+c x^2}}{(b d+2 c d x)^{3/2}} \, dx=\int \frac {\sqrt {c\,x^2+b\,x+a}}{{\left (b\,d+2\,c\,d\,x\right )}^{3/2}} \,d x \]

[In]

int((a + b*x + c*x^2)^(1/2)/(b*d + 2*c*d*x)^(3/2),x)

[Out]

int((a + b*x + c*x^2)^(1/2)/(b*d + 2*c*d*x)^(3/2), x)